提升Python程序性能的好习惯
掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。
1、使用局部变量
尽量使用局部变量代替全局变量:便于维护,提高性能并节省内存。
使用局部变量替换模块名字空间中的变量,例如ls=os.linesep。一方面可以提高程序性能,局部变量查找速度更快;另一方面可用简短标识符替代冗长的模块变量,提高可读性。
2、减少函数调用次数
对象类型判断时,采用isinstance()最优,采用对象类型身份(id())次之,采用对象值(type())比较最次。
#判断变量num是否为整数类型
type(num)==type(0)
#调用三次函数
type(num)istype(0)
#身份比较
isinstance(num,(int))
#调用一次函数
不要在重复操作的内容作为参数放到循环条件中,避免重复运算。
#每次循环都需要重新执行len(a)
whilei statement #len(a)仅执行一次 m=len(a) whilei statement 如需使用模块X中的某个函数或对象Y,应直接使用fromXimportY,而不是importX;X.Y。这样在使用Y时,可以减少一次查询(解释器不必首先查找到X模块,然后在X模块的字典中查找Y)。 3、采用映射替代条件查找 映射(比如dict等)的搜索速度远快于条件语句(如if等)。Python中也没有select-case语句。 #if查找 ifa==1: b=10 elifa==2: b=20 ... #dict查找,性能更优 d={1:10,2:20,...} b=d[a] 4、直接迭代序列元素 对序列(str、list、tuple等),直接迭代序列元素,比迭代元素的索引速度要更快。 a=[1,2,3] #迭代元素 foritemina: print(item) #迭代索引 foriinrange(len(a)): print(a[i]) 5、采用生成器表达式替代列表解析 列表解析(listcomprehension),会产生整个列表,对大量数据的迭代会产生负面效应。 而生成器表达式则不会,其不会真正创建列表,而是返回一个生成器,在需要时产生一个值(延迟计算),对内存更加友好。 #计算文件f的非空字符个数 #生成器表达式 l=sum([len(word)forlineinfforwordinline.split()]) #列表解析 l=sum(len(word) forlineinfforwordinline.split()) 6、先编译后调用 使用eval()、exec()函数执行代码时,最好调用代码对象(提前通过compile()函数编译成字节码),而不是直接调用str,可以避免多次执行重复编译过程,提高程序性能。 正则表达式模式匹配也类似,也最好先将正则表达式模式编译成regex对象(通过re.complie()函数),然后再执行比较和匹配。 7、模块编程习惯 模块中的最高级别Python语句(没有缩进的代码)会在模块导入(import)时执行(不论其是否真的必要执行)。因此,应尽量将模块所有的功能代码放到函数中,包括主程序相关的功能代码也可放到main()函数中,主程序本身调用main()函数。 可以在模块的main()函数中书写测试代码。在主程序中,检测name的值,如果为'main'(表示模块是被直接执行),则调用main()函数,进行测试;如果为模块名字(表示模块是被调用),则不进行测试。 以上内容为大家介绍了提升Python程序性能的好习惯,希望对大家有所帮助,如果想要了解更多Python相关知识,请关注IT培训机构:千锋教育。http://www.mobiletrain.org/
相关推荐HOT
更多>>python类对象和实例对象是一样的吗
python面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“...详情>>
2023-11-06 22:21:27python pyc 文件
一个pyc文件包含了三部分信息:Python的magicnumber、pyc文件创建的时间信息,以及PyCodeObject对象。magicnumber是Python定义的一个整数值。一...详情>>
2023-11-06 16:10:10python的keras训练
Keras模型在输入数据和标签的Numpy矩阵上进行训练。为了训练一个模型,你通常会使用fit函数。文档详见此处。fit(self,x,y,batch_size=32,epochs...详情>>
2023-11-06 15:46:04python装饰器的概念
装饰器一直是我们学习python难以理解并且纠结的问题,想要弄明白装饰器,必须理解一下函数式编程概念,并且对python中函数调用语法中的特性有所...详情>>
2023-11-06 12:05:19