python中RNN和LSTM的基本介绍
python中RNN和LSTM的基本介绍
1、RNN
简单的神经网络和卷积神经网络都有一个主要的特点,那就是都不具备记忆能力,也就是说,它们都是分别处理每一个输入,而不存在前、后两个输入之间的关系。例如,您需要处理数据点或时序,您需要同时向网络显示整个时序,也就是将时序转换为单一数据点输入。采用这种输入方式的网络叫做前向神经网络(feddforwardnetwork)。
为了使这个过程更加容易理解,我们用简单的循环逻辑来实现一个RNN的前向传播。
#简单的RNN实现Numpy实现
importnumpyasnp
timesteps=100
input_feature=32
output_fearture=64
inputs=np.random.random((timesteps,input_feature))#生成100,32形状的矩阵
print(inputs)
state_t=np.zeros((output_fearture,))#生成64个全为0的数
print(state_t)
w=np.random.random((output_fearture,input_feature))
u=np.random.random((output_fearture,output_fearture))
b=np.random.random((output_fearture,))
successive_outputs=[]
forinput_tininputs:
output_t=np.tanh(np.dot(w,input_t)+np.dot(u,state_t)+b)#np.dot表示数组点积
successive_outputs.append(output_t)
state_t=output_t
final_output_sequence=np.stack(successive_outputs,axis=0)
print(final_output_sequence)
2、LSTM
在理论上,RNN应该能够记住在过去的时间里看到过的信息,但是实际上它不可能学习长期存在的信息,主要是由于梯度消失的问题。因此研究人员设计了LSTM(longshort-termmemory),也就是所谓的长短期记忆。
与RNN相比,LSTM多了一种跨域携带信息的多时间步法(细胞状态C),这种步法类似于传送带,它运行方向与你所处理的序列方向平行,而序列中的信息可以随时跳到传送带上,然后被传送带送到更远的时间步,必要时还能原封不动地跳回来。那是LSTM的原理。
以上就是python中RNN和LSTM的基本介绍,希望能对大家有所帮助!更多Python学习教程请关注IT培训机构:千锋教育。
相关推荐HOT
更多>>为什么Python适合作为第一个学习的编程语言?
Python语言设计的初衷就是容易上手。作为一门基础语言,融会贯通后,有助于学习其他语言,例如PHP,Perl,Ruby等。可以快速架起抽象的程序世界...详情>>
2023-11-08 17:48:07Python 网络编程
python提供了两个级别访问的网络服务:低级别的网络服务支持基本的Socket,它提供了标准的BSDSocketsAPI,可以访问底层操作系统Socket接口的全...详情>>
2023-11-08 16:50:33pythonOrderedDict在python字典的实现
OrderedDict在python字典的实现1、OrderedDict的popitem方法这个类型在添加键的时候会保持顺序,因此键的迭代次序总是一致的。OrderedDict的pop...详情>>
2023-11-08 15:37:46python日志库的模块化方法
python日志库的模块化方法1、模块化方法日志库采用模块化方法,并提供几类组件:记录器(loggers),处理器(handlers),过滤器(filters)和格式化...详情>>
2023-11-08 14:45:39